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THE THEORY OF PIEZOELECTRIC 

Le Khan' Chau 

A variational formulation of the problem of the equilibrium of completely 
anisotropic piezoelectric shells is formulated. Using a variational 

SHELLS* 

asymptotic method, a system of two-dimensional statics equations is 
derived for piezoelectric shells. The asymptotic accuracy of the two- 
dimensional theory constructed is proved. 

1. Variational principles of the theory of piezoelectricity. In a three- 
dimensional spaceRawe consider a linear dielectric body occupying the domain V in the initial 
state. We introduce in V Lagrange coordinates of the points e@ which are related to the 
Cartesian coordinates z'by the equations xi= xi@'). Let the body boundary W be the union 
of two-dimensional surfaces S&i),..., &(N) (electrodes) and the rest of the boundary S,. For 
simplicity we will consider the case of purely electrical loading on the body, which corresponds 
to giving the value of the electric potential on the electrodes. Then the fundamental 
variational principle of the electrostatics of dielectrics states /l/: among all possible 
displacement fields w4 and all possible electric induction fields D” that satisfy the conditions 

VP=0 in V, D%,, = 0 on ST W) 

the true functions Ja,Da at the equilibrium position yield a minimum of the body energy 
functional 

The v, in (1.11, (1.2) are components of the external normal vector to W, dv isanelement 
of volume, do is an element of area, (p,, = const is the value of the potential on the n-th 

electrode S$“, and e., = x(,'w~,I,) are strain tensor components (x.' =&r'/@a). Here an henceforth 
the superscripts a, b, c, cl,... correspond to projections on the axesoftheaccompanyingcoordinate 
system to, while the superscripts i,j,k,l,... are projections on the axes of the Cartesian 
coordinate system 3. The comma in the subscripts denotes partial differentiation, the symbol 

g&l represents covariant differentiation in the metric g,, and the parentheses in the subscripts 
denote the symmetrization operation. The subscripts and superscripts are juggled by using 
the metric gas, while summation is over repeated upper and lower indices. 

A piezoelectric is a dielectric body for which the function U(Q., 0.) is a strictly 
positive quadratic form in e, and D, 

(1.3) 

By varying the functional (1.2) undertheconstraints (1.1) for this case, we obtain the 
equations and boundary conditions 

D%,=U on S,, (p='pn on S(n) o, n=l,...,N (1.5) 
&kb=o on av 

Here&is the electric field, m is the electric potential (essentially the Lagrange 
multiplier for the constraint (l.l)), and & are stress tensor components. 

Applying the reciprocity technique /2/, the principles (1.1) and (1.2) canbereformulated 
into the following minimax principle: the true functions @,,T at the equilibrium position 
yield a maximum in cp and a minimum in wt for the functional 

z- {H(e&, E,)dv W4 
V 

under the constraints 

*Prikl.Matem.Mekhan.,50,1,136-146,1986 98 



99 

(p=cpn on S!J', n = i I * *., N (f.7) 
where E,= -V,cp. The function H(s,, E,), called the electric enthalpy density /3/, is the 
Legendre transformation ofthe function U(%,D,) in the variable D,taken with opposite sign. 
If U is given by (1.31, then 

(W 

According to the definition of H(e&, En) we have the relationship 

(i-9) 

which together with the statics Eqs.tl.4) and the boundary conditions (1.5) form a correctly 
formulated boundary value problem. 

We shall later consider the minimax principle (1.6), (1.7) most convenient for the 
application of a variational asymptotic analysis in the equilibrium problem for piezoelectric 
shells. See /4, 5/ for other variational principles in the theory of piezoelectricity. 

2. Three-dimensional problems of the theory of piezoelectric shells. Let 
us consider a domain V of the special form 

r'($. P)=r'(E") + Psi(F) (2.1) 
s R,,where z' = r'(e) is the equation of a smooth surface 62 bounded by the contour I?, and 

are components of the unit vector normal to 9. The coordinates p, E' vary in a cylinder 
of height h: EWE 0, 1 &al(h12; the domain of variation of p, exactly like the middle surface, 
is denoted by S& the small Greek superscripts run through the values 1, 2 and correspond to 
projections on the b axis while the superscript 3 is usually omitted (es= E). A piezoelectric 
body occupying the domain V in the initial state is called a piezoelectric shell with middle 
surface 61 and thickness h. 

Let Q, denote the facial surfaces of the shell given by (2.1) for e =&h/2. We will 
examine the two methods of electrical loading of a shell encountered most often /3/. 

A. There are no electrodes on the facial surfaces. There are electrodes on the shell 
edge, i.e., the contour r is a union of curves r9@),..., rqN (where there are electrodes) 
and the rest r,. For $ E I$ x I- h/2* h/21 values aregiven for the electric potential 

cp - (pn, n = 1, 2, . . ., N (2.2) 

B. The facial surfaces !& are covered with electrodes. Values of the electric potential 
are given on them 

cp ==tcpo~2 for E = f h/2 

According to the variational principle (1.6), (1.71, the true displacements 
electric potentialT correspond to extremals of the functional 

(2.3) 
iii, and the 

(2.4) 

under the constraints (2.2) (inproblem A) , and the constraints (2.3) (in problem B) . 
The H(e,, E.) in the functional (2.4) is the electric enthalpy density given by (1.8) 

x = 112& + KE', do = f-i&ldy, a = det IIcQ)I, where w is the first quadratic form (metric) 
of 8, a and K are themean and Gaussian curvatures of Q. The following geometric and kine- 
matic relationships /2/ are true in the coordinate system (2.1): 

gM=aq-%&+c&?, g-=8, gas=1 (2.5) 

BQB=~[(~-~~)~UB+~~(~-_~)~~_~-E'C~], 

gpII,o, g==1 
* 

%e = xgwi. 6) = &wi. 8) - &hiwt, 81, em = n’wi, 6 

2% = ~a’wr, g + n’wi, a = P,‘WI, E - Eb&kiwi, E + n'w, a 

where bM,cM are the second and third quadratic forms of Q. 
The problem is to replace the three-dimensional functional (2.4) by an approximate two- 

dimensional functional in which there are functions dependent only on the longitudinal 
coordinates El, EL. 

The possibility of changing from the three- to the two-dimensional problem is related 
to the smallness of the ratio between the thickness h and the characteristic radiusofcurvature 
R of the shell middle surface /2/, and to the characteristic scale and strain and electrical 
field variation over the longitudinal coordinates 1. By using a variational asymptotic method 
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/2/, a two-dimensional functional will be constructed below for the electrical enthalpy of 
piezoelectric shells in which terms of the order of hlR and hll are neglected compared with 
unity (the "classical" approximation). Extending the technique of estimating the error /6--8/ 
to the statics of piezoelectrics, we prove a theorem acdording to which the theory of piezo- 
electric shells constructed in this paper actually allows an error of h/R +h/l in determining 
the electroelastic state of stress. 

Two-dimensional theories have been constructed in /g-15/ in certain special cases of 
piezoelectric shells (see the survey /16/, also). The papers /9, 10, 14, 15/ are devoted to 
piezoelectric shells, and /ll-13/to piezoelectric plates. An asymptotically exact theory of 
completely anisotropic piezoelectric shells was constructed in /17/ (the case of piezoelectric 
shells with electrodes on the facial surfaces is examined in addition in this paper). 

3. Two-dimensional moduli. We represent the electrical enthalpy density H(&e,&) 
inthe following form: 

The representation of H(ed, E.) in the form (3.1) turns out to be convenient for 
asymptotic analysisofthe functional (2.4). Simple calculations show that 

H ,, = + &@Q,+, - e~a8e,&v - + e2EdQ1 (3.2) 

The coefficients ~$~',e~~, en*, ~7, @a,d*@a, asas, IQb, fl, &U's &?v@, @ in the trans- 
formations of the coordinate systems on the middle surface behave as surface tensors. We 
shall call them "two-dimensional" moduli. They are evaluated in terms of the three-dimensional 
moduli by means of the formulas 

(3.4) 

For simplicity we shall consider the case of piezoelectric shells that are homogeneous 
over the thickness. It can be shown that for such shells any two-dimensional moduli possess 
the properties 

A (&=, &) =x (b) + 0 (4) x (E”) 

Therefore, when constructing a classical theory of shells havinq the errors hJR and h,il 
as compared with unity, it can be assumed that A =K, i.e., the two-dimensional moduli of 
shells homogeneous over the thickness are independent of the transverse coordinate. 

We will distinguish certain special symmetry cases. 
lo . Symmetry planes parallel to the middle surface. If the properties of the medium 

are invariant under reflections relative to planes parallel to the middle surface, then the 
following two-dimensional tensors vanish: 

cE""= 0, ema=O, tt'=O, t,fi=O, qPvv=O, q&=0 

Z". Transversal isotropy. When the properties of the medium are invariant under rotation 
around the vector normal to the middle surface (a model of a piezoceramic shell polarized 
along the normal with symmetry oo.m /3/j, it can be shown that all two-dimensional tensors 
with odd number of superscripts vanish, the tensor c$* has the form 

cI;Bvb=c,Na@a* + Q'(a~a8d + adafly) 
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and all the two-dimensional tensors of second rank are global. 

4. Asymptotic analysis of the electrical enthalpy functional. Problem A. 
In order to fix the domain of variation of the transverse coordinate in the passage to the 
limit h-0, we make the change of variable E =y, 1 cl <'/I. Then h will occur explicitly in 
the functional (2.4). We shall seek the field of the displacement d and the potential cp in 
the form 

where u',t) are independent of 6. Because of the overdefinition of u',q the following 
constraints can be imposed on #,x : 

<d> = 0, a> = 0 (4.2) 

where <.> is the integral with respect to I; within the limits [--'/,,'/,I. Eqs.Cl.1) and (4.2) 
set up a mutually one-to-one correspondence between w',cp and the set of functions ui,$, $, x 
and determine the change in the desired functions {w‘, cp}-+ {u',~$,$,x}. 

Asymptotic analysis enables us to determine the order of smallness of $,I_ If these 
terms are neglected, then (4.1) is a generalization of the well-known Kirchhoff-Love hypotheses 
to a piezoelectric shell. The electroelastic state of stress of a shell is here characterized 
completely by the measure of the tension A, = qai&,~,, by the measure of the bending Bm = 

pnw thz .ftp&, B) and by the surface electric field F= = -_9,& the covariant differentiation 
w is denoted by the semicolon in the subscripts. 

We introduce the following notation: 

We consider a certain point of 61. The best constant 1 in the inequalities 

IAaa,vl<+ WclB,,I<+ IF,d<+ (4.3) 

is called the characteristic scale of variation of the electric field deformation in the 
longitudinal coordinates. We define the internal domain Q, as a subdomain of 61 in which the 
following inequalities hold: 

h, = hlR < 1, h,, = hll< 1 (4.4) 

We assume the domain 62 to consist of the interior domain 9, and the domain a, abutting 
on the contour r with width of order h (boundary layer). Then the functional (2.4) can be 
divided into the sum of two functionals, an inner one for which an iteration process will be 
constructed, and a boundary layer. As in the theory of elastic shells /2/, the boundary layer 
functional can be neglected in the classical approximation. Therefore, the problem reduces 
to finding the minimax point of the interior functional that can be identified with the 
functional (2.4) (C$S Q). 

We fix u',$ and we seek ~1, x. It follows from the assumption (4.4) and formulas (2.6) 
and (4.3) that to a first approximation 

eae=-Q- h&J, 2az,=ya,tt aaa=rt,t, &=Fort i(4.5.) 

En=--x.t 

Substituting (4.5) into the functional (2.4) with an electric enthalpy density in the 
form (3.11, (3.2), we obtain the functional 
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Ya = bla. t + tC (A, - h&S) - t,wp 

F=-x,t+QQB(dcrS--hBols6)+q”P, 

The functions y,, y,x only occur in the functional J, in terms of y,v=,F. 
We minimize the functional (4.6) in ya, y and maximize in x under the constraints (4.2). 

The minimax value I is obviously reached for y = ~a i-2 Fs 0, i.e., for 

Y=-_(PBd~--PF,)5+~h~8~(C--) (4.7) 

yc& = - (trf& - t&T,) 6 + f hgBp, 6’ - 
( -h-J 

x = (qOB-b + PPCL) c - + W&e (6’ - -&) 

The functionalJlvanishes on the extremals and the average electrical enthalpy functional 
takes the form 

J = s Y (A@, Bae, Pa) do (4.8) 

y (LB, By, Fa) = + (,PA~A~ + -$ CPB,B~ - 

2ePAcglFv - sYF&) 

Problem B. In this problem the electric potential rp should satisfy the constraints (2.3), 
consequently, we make a different changeinthe desired functions than (4.1) by substituting 
~~05 in place of *, We impose the constraint 

<YO =O, XI+*a/.=8 (4.9) 

on the functions yi,x 
By performing a procedure analogous to asymptotic analysis, it can be shown that the 

relationships 

s~=Aa~--&t, %,,a=~,,~, ~u=y.~ (4.10) 

I$, = 0, E, = - ‘polh - xoF, 

are true to a first approximation. 
Substituting (4.10) into the functional (2.4) and seeking its minimal value in Ya, Y* x7 

we obtain the two-dimensional functional 

J = [‘Yr Mzis &d + y, (AcqB, &dl h 
ii 

(4.11) 

Y', = +(~Pa,a, + $- cY~~B~~B~) (4.12) 

‘PI= inf sup JL= inf sup~(c~~~+2c~yy,+ 
Yrz.Y x V.z,U x 

cpy,y~-2e*~'8yF- Wv.F-@Fa) 

v=~,t+r@(Aw---&d)v ~a=ya,t+t~‘(APY-hBcrh) 
F = - TO/~‘- x, t + fl (&g-h&&) 

It can be shown thattheminimax value J, in (4.12) under the constraints (4.9) will be 
reached if and only if 

F=++q=@Acrp, Ya=k,F, y=fF (4.13) 

x=+hq@B~(p-+) 

y=-ffpo-ffa8A,&f-1_ h@B,, (5’ - 4) 

ya = - k:+ r, - kr:VA,,I, ; $ htrB, ( cs - -&) 

On the extremals (4.13) 

'YI=_L&?Fk 
2 -+s: 

(- +P%g) 

Therefore, taking (3.4) into account, we can write the average electrical enthalpy 
functional for shells with electrodes on the facial surfaces in the final form 

J = s Y (&B, Bczd da (4.14) 
Q 

Y (A@, Ba& =% (&Bv*A,gAvd + $ &“B~B,a + 2e~‘A,~ F) 

Within the framework of classical approximation accuracy, a certain simplification in 
(4.8) and (4.14) can be achieved by, for instance, replacing the bending measure Eae by 

another measure BLe= BarB+Q$A,.b, where the tensor Q$ depends only on ,~,,s and hap. Inparticular, 
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the following measures were proposed /2/: Koiter-Sanders paB=BM-b&8, and Novozhilov-Balabukh 

Q--P@ -'lJ7dolsaydn, where dw = &&6 6==1&,$w, &,,, -bc2eMv In this connection diverse 
invariants of the classical theory of piesoelectric shells canbeobtained /9, 10, 14, 15-17/. 

5. Equilibrium equation of piezoelectric shells. Case A. The electrical 
enthalpy functional is given by (4.8). It follows from condition (2.2) that to a first approxi- 
mation the function q should satisfy the constraints 

9 =% on l"e(n), n = 1, . . ., N (5.1) 
By varying the functional (4.8) under the constraints (5.1), we obtain the system of 

equations 

qa = 0, Tae = Sac - b,&l4@ 

The SB in (5.2) is the tensile force tensor, iWe is the bending moment tensor, and 
Ga is the "surface" electric induction vector. They are expressed in terms of Aolb, B,,, F, 
by the following electroelasticity relationships: 

(5.3) 

@,__+__ ;; ci?@B*, 

G” = - -$- = h (e~vA~v + &Fe), 
a 

Together with the kinematic relationships 

Aae=u(a;,3)-&@. B,B =n;a~-caen + ~&u~:B, + b&in?. 
Far=--$.a 

(5.4) 

(5.2) and (5.3) form a closed system of equations to determine the four unknown functions 
G, u, 9 (where u, =r,'ul, u = r&J. The boundary conditions on I' for (5.21, (5.3) and (5.4) 
have the form 

(TM - 4Ww) ve = 0 (5.5) 
*v, + &%&e)=O, M%,#=,=O 

$=cp, on@', n=l, . . ., N, Gay,=0 on rr 

where h, v, are components of the surface vectors, tangent and normal to the contour I'. 

Case B. The equilibrium equations and boundary conditions are the same as in the classical 
theory of elastic shells /2/. Changes concern just the equations of state 

(5.6) 

6. Connection between the three- and two-dimensional electroelastic states 
of stress. To complete the construction of the piezoelectric shell model, we indicate a 
method of restoring the three-dimensional electroelastic state of stress by means of the two- 
dimensional state. To do this, the strain e and the electric field E must be found to a first 
approximation by the asymptotic formulas in Sect.4. The stress tensor s andtheinduction 
vector D are found by means of the three-dimensional electroelasticity relationships (1.9). 
Omitting the calculations , we present the final formulas for (e, E) and (0, D) to a first 
approximation. 

Case A. Strain-electrical field 

PM=&,-&& (6.1) 

Stress-induction 

(6.2) 

Case B. Strain-electrical field 
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(6.3) 

Stress-induction 

(6.4) 

7. Error estimates of the classical theory of piezoelectric shells. We 
consider the linear vector space of electroelastic states of stress that consists of elements 
of the form 3 -(u,E), where (I is the stress field, and E is the electric field in the domain 
V. In this space we introduce the following norm: 

US~;,=C,[~]= SG(~, E)~U (7.1) 
V 

where the function G(a, E) is the Legendre transformation of the function iJ(s, D) in all the 
variables /3/ 

G (u, E) = + &d%fd + d=@~= + + F&.E~E~ (7.2) 

We will give the description "k.inematically allowable" to those electroelastic states 
of stress s" for which the strain a" and the electric induction D'fields exist such that 

s:.b = X;aW;,bj; v,,D-= 0, D=%,=O On & (7.3) 
while #and E" are expressed in terms of so and D" according to (1.4). We call those =A 
"statically allowable" for which 

V,uAab=O, uA*Q=O on 8V 

Et=-V,,@, cpA=(pn on S$‘), n=l,..., N. 
(7.4) 

Let 3 be a real electroelastic state of stress that is realized in a piezoelectric body 
v on specifying values of the potential (pn on the electrodes S@(n) . Thus the following 
identity 

c, [S- l/*(30 + 391 =c, [l/*(BO-- 3r)] (7.5) 
that generalizes the Prager-Synge identity /7/ to the staticsofpiezoelectrics and is provable 
by an analogous method, turns out to be valid. 

From the identity (7.5) we have 

Theorem. The electroelastic state of stress constructed by the two-dimensional theory 
of piezoelectric shells (Sects.5 and 6) differs in the norm L, from the exact electroelastic 
state of stress constructed by the three-dimensional theory of piezoelectricity by a quantity 
of the order of h, + h,, as compared with one. 

To prove this we must present the kinematically and statically allowable three-dimensional 
fields of the electroelastic states of stress that differ from that constructed by the two- 
dimensional theory by a quantity of the order of h,and h,, as compared with unity /6, 8/. 

Case A. Kinematically allowable field. We determine the displacement by means of (4.1) 
and (4.7), and e" by means of (7.3). We take D'= in the form D<= = z"@) - $YB,& for the 

induction vector Da. (Later, all quantities without the o and - refer to solutions of the 
equilibrium equations of piezoelectric shells by the two-dimensional theory of Sect.5.) We 
select the quantity 2'" such that tDO~?oE- ea$vAp, +@FBs G=/h. The component D* is found 

from the known D.= from the solution of the electrostatics equation 

(D"=x);=+ (0%) = 0 .E (7.6) 

Knowing (e',DO), we find 8" from the electroelasticity Eqs.cl.4). 
Statically allowable field. We will write down the mechanical equilibrium equations 

for a shell /2/ 

+ + -& @g “I@) - &J,= = 0, 
a 

rfg+eb=8+~T=0 (7.7) 

(raB =pp=%S, P= 0=&A, r=a=%, pfi==ce=- $=E) 
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To find the stress tensor aA satisfying (7.71, we proceed thus. We give &* in the 

form ,A@ = @+@, where ro @,pare independent ofE and are selected from the condition(&‘@)E= 

fl,(rA@&)a= ,@.Solving (7.71, we can find yha and rh and then aAw and aha. It turns out 
that (5.2) isthe sufficient conditions for the existence of zAa and r".We specify the potential 

CPA by formulas (4.1), (4.7). It is assumed here that the three-dimensional boundary con- 
ditions are given not in the form (2.2), but in conformity with (4.1) and (4.7) (the so-called 
regular boundary conditions in the terminology of /8/). 

Considerations concerning the generalization of the Saint-Venant principle to piezoelectrics 

/18/. 

Case B. Kinematically allowable field. The displacements ro"l are given by (4.9) and 
(4.13), Doa by (6.4), and Do* is found from (7.6). We hence find 8" by means of (1.4). 

Statically allowable field. The construction is analogous to case A. 
It can be shown that in both cases 8' and a A differ from that constructed by the two- 

dimensional theory (Sect.5) by a quantity of the order of h,+h,, as compared with unity. 
From the above and the identity (7.5) there follows the asy&ptotic accuracy of the constructed 
theory in the energy norm (7.1). 

The author is grateful to V.L. Berdichevskii for useful remarks. 
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